Physical Properties of Beech Wood Thermally Modified in Hot Oil and in Hot Air at Various Temperatures

نویسنده

  • Bekir Cihad Bal
چکیده

In this study, beech wood was treated in hot oil and in hot air to determine the differences in the effects of the two processes on the physical properties of the wood. Heat treatment was conducted at temperatures of 160, 190, and 220 °C for 2 h at atmospheric pressure. After the heat treatment, various properties of the wood, including mass increase in hot oil treatment (wt% gain), mass loss in hot air treatment (wt% loss), oven-dried density, swelling, equilibrium moisture content, fiber saturation point, and moisture content were determined. Regression analyses were conducted to assess the differences in mass change and volumetric swelling, and the findings were analyzed statistically. The results showed that heat treatment in hot oil influenced the physical properties of beech wood more than treatment in hot air. However, the extensive uptake of oil by the wood samples, resulting in mass increases, was a negative issue associated with the hot oil treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hot-Air/Hot-Steam Process for the Production of Laccase-Mediator-System Bound Wood Fiber Insulation Boards

In this study, a new technical process for hardening wood fiber insulation boards is introduced. During the dry-process, the fibers are usually glued with polymeric-diphenylmethane-diisocyanate (pMDI) and hardened to wood fiber insulation boards using a steam-air mixture. However, the maximum temperature reached in the steam-air process was 100 °C, and it was impossible to use an alternative bi...

متن کامل

Influence of hydrothermal treatment on the dimensional stability of beech wood

Hydrothermal treatment of wood material products with many interesting properties such as enhanced dimensional stability, lower equilibrium moisture content and increased biological durability. The effects of hydrothermal treatment on dimensional stability, oven dry density and water absorption of beech wood (Fagus Orientalis) naturally grown, has been studied in present research that extremely...

متن کامل

Determining the Hot Deformation Temperature Range of Medium Carbon Ni-Cr-Mo Low Alloy Steels using Hot Tensile and Hot Torsion Tests

The aim of this study was to investigate the suitable temperature range for hot deformation of three medium carbon Ni-Cr-Mo low alloy steels by hot tensile and hot torsion tests. Hot tensile tests were carried out in the te,prature range of 850-1150°C at a constant strain rate of 0.1 s-1 until fracture. Then, the tensile flow behavior, hot ductility and microstructural evolution of the steels w...

متن کامل

A Correlation between the Gas and Liquid Permeabilities of Beech Wood Heat-treated in Hot Water and Steam Mediums

Heat-treatment, a major method of wood modification for improving dimensional stability and natural durability, has been studied considerably in the scientific literature. This study will focus on the effect of heat-treatment on permeability, an important physical property of wood by subjecting beech samples to two different mediums of hot water and steam, as well as in two buffered hot water o...

متن کامل

THE DEFORMATION BEHAVIOR OF AZ31 MAGNESIUM ALLOY AT ELEVATED TEMPERATURES

AZ31 magnesium alloy is considered as a promising alloy in various applications and industries. Furthermore, to design a proper hot working process (rolling, forging and extrusion), the assessment of hot working behaviour of the alloy is necessary. Accordingly, the hot deformation behaviour of AZ31 alloy was studied through hot compression testing method This was carried out in a wide range of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015